Extensions 1→N→G→Q→1 with N=C22 and Q=D4×C9

Direct product G=N×Q with N=C22 and Q=D4×C9
dρLabelID
D4×C2×C18144D4xC2xC18288,368

Semidirect products G=N:Q with N=C22 and Q=D4×C9
extensionφ:Q→Aut NdρLabelID
C22⋊(D4×C9) = D4×C3.A4φ: D4×C9/C3×D4C3 ⊆ Aut C22366C2^2:(D4xC9)288,344
C222(D4×C9) = C9×C4⋊D4φ: D4×C9/C36C2 ⊆ Aut C22144C2^2:2(D4xC9)288,171
C223(D4×C9) = C9×C22≀C2φ: D4×C9/C2×C18C2 ⊆ Aut C2272C2^2:3(D4xC9)288,170

Non-split extensions G=N.Q with N=C22 and Q=D4×C9
extensionφ:Q→Aut NdρLabelID
C22.1(D4×C9) = C9×C4○D8φ: D4×C9/C36C2 ⊆ Aut C221442C2^2.1(D4xC9)288,185
C22.2(D4×C9) = C9×C23⋊C4φ: D4×C9/C2×C18C2 ⊆ Aut C22724C2^2.2(D4xC9)288,49
C22.3(D4×C9) = C9×C4≀C2φ: D4×C9/C2×C18C2 ⊆ Aut C22722C2^2.3(D4xC9)288,54
C22.4(D4×C9) = C9×C22.D4φ: D4×C9/C2×C18C2 ⊆ Aut C22144C2^2.4(D4xC9)288,173
C22.5(D4×C9) = C9×C8⋊C22φ: D4×C9/C2×C18C2 ⊆ Aut C22724C2^2.5(D4xC9)288,186
C22.6(D4×C9) = C9×C8.C22φ: D4×C9/C2×C18C2 ⊆ Aut C221444C2^2.6(D4xC9)288,187
C22.7(D4×C9) = C9×C2.C42central extension (φ=1)288C2^2.7(D4xC9)288,45
C22.8(D4×C9) = C9×D4⋊C4central extension (φ=1)144C2^2.8(D4xC9)288,52
C22.9(D4×C9) = C9×Q8⋊C4central extension (φ=1)288C2^2.9(D4xC9)288,53
C22.10(D4×C9) = C9×C4.Q8central extension (φ=1)288C2^2.10(D4xC9)288,56
C22.11(D4×C9) = C9×C2.D8central extension (φ=1)288C2^2.11(D4xC9)288,57
C22.12(D4×C9) = C22⋊C4×C18central extension (φ=1)144C2^2.12(D4xC9)288,165
C22.13(D4×C9) = C4⋊C4×C18central extension (φ=1)288C2^2.13(D4xC9)288,166
C22.14(D4×C9) = D8×C18central extension (φ=1)144C2^2.14(D4xC9)288,182
C22.15(D4×C9) = SD16×C18central extension (φ=1)144C2^2.15(D4xC9)288,183
C22.16(D4×C9) = Q16×C18central extension (φ=1)288C2^2.16(D4xC9)288,184

׿
×
𝔽