Extensions 1→N→G→Q→1 with N=C22 and Q=D4xC9

Direct product G=NxQ with N=C22 and Q=D4xC9
dρLabelID
D4xC2xC18144D4xC2xC18288,368

Semidirect products G=N:Q with N=C22 and Q=D4xC9
extensionφ:Q→Aut NdρLabelID
C22:(D4xC9) = D4xC3.A4φ: D4xC9/C3xD4C3 ⊆ Aut C22366C2^2:(D4xC9)288,344
C22:2(D4xC9) = C9xC4:D4φ: D4xC9/C36C2 ⊆ Aut C22144C2^2:2(D4xC9)288,171
C22:3(D4xC9) = C9xC22wrC2φ: D4xC9/C2xC18C2 ⊆ Aut C2272C2^2:3(D4xC9)288,170

Non-split extensions G=N.Q with N=C22 and Q=D4xC9
extensionφ:Q→Aut NdρLabelID
C22.1(D4xC9) = C9xC4oD8φ: D4xC9/C36C2 ⊆ Aut C221442C2^2.1(D4xC9)288,185
C22.2(D4xC9) = C9xC23:C4φ: D4xC9/C2xC18C2 ⊆ Aut C22724C2^2.2(D4xC9)288,49
C22.3(D4xC9) = C9xC4wrC2φ: D4xC9/C2xC18C2 ⊆ Aut C22722C2^2.3(D4xC9)288,54
C22.4(D4xC9) = C9xC22.D4φ: D4xC9/C2xC18C2 ⊆ Aut C22144C2^2.4(D4xC9)288,173
C22.5(D4xC9) = C9xC8:C22φ: D4xC9/C2xC18C2 ⊆ Aut C22724C2^2.5(D4xC9)288,186
C22.6(D4xC9) = C9xC8.C22φ: D4xC9/C2xC18C2 ⊆ Aut C221444C2^2.6(D4xC9)288,187
C22.7(D4xC9) = C9xC2.C42central extension (φ=1)288C2^2.7(D4xC9)288,45
C22.8(D4xC9) = C9xD4:C4central extension (φ=1)144C2^2.8(D4xC9)288,52
C22.9(D4xC9) = C9xQ8:C4central extension (φ=1)288C2^2.9(D4xC9)288,53
C22.10(D4xC9) = C9xC4.Q8central extension (φ=1)288C2^2.10(D4xC9)288,56
C22.11(D4xC9) = C9xC2.D8central extension (φ=1)288C2^2.11(D4xC9)288,57
C22.12(D4xC9) = C22:C4xC18central extension (φ=1)144C2^2.12(D4xC9)288,165
C22.13(D4xC9) = C4:C4xC18central extension (φ=1)288C2^2.13(D4xC9)288,166
C22.14(D4xC9) = D8xC18central extension (φ=1)144C2^2.14(D4xC9)288,182
C22.15(D4xC9) = SD16xC18central extension (φ=1)144C2^2.15(D4xC9)288,183
C22.16(D4xC9) = Q16xC18central extension (φ=1)288C2^2.16(D4xC9)288,184

׿
x
:
Z
F
o
wr
Q
<